
Existence of short-time approximations of any polynomial order for the computation
of density matrices by path integral methods

Cristian Predescu
Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA

(Received 31 October 2003; published 4 May 2004)

In this paper I provide significant mathematical evidence in support of the existence of direct short-time
approximations of any polynomial order for the computation of density matrices of physical systems described
by arbitrarily smooth and bounded from below potentials. While for Theorem 2, which is “experimental,” I
only provide a “physicist’s” proof, I believe the present development is mathematically sound. As a verifica-
tion, I explicitly construct two short-time approximations to the density matrix having convergence orders 3
and 4, respectively. Furthermore, in Appendix B, I derive the convergence constant for the trapezoidal Trotter
path integral technique. The convergence orders and constants are then verified by numerical simulations.
While the two short-time approximations constructed are of sure interest to physicists and chemists involved in
Monte Carlo path integral simulations, the present paper is also aimed at the mathematical community, who
might find the results interesting and worth exploring. I conclude the paper by discussing the implications of
the present findings with respect to the solvability of the dynamical sign problem appearing in real-time
Feynman path integral simulations.
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I. INTRODUCTION

In the path integral formulation, the density matrix of a
thermodynamic system is expressed as the expected value of
a functional of the Brownian motion by means of the
Feynman-Kac formula[1–3]

rsx,x8;bd
r fpsx,x8;bd

= E expH− bE
0

1

Vfxrsud + sBu
0gduJ . s1d

Here,rsx,x8 ;bd is the density matrix for a one-dimensional
canonical system characterized by the inverse temperature
b=1/skBTd and made up of identical particles of massm0

moving in the potentialVsxd. The stochastic element that
appears in Eq.s1d, hBu

0,0øuø1j, is a so-called standard
Brownian bridge, defined as follows: ifhBu,uù0j is a stan-
dard Brownian motion starting at zero, then the Brownian
bridge is the stochastic processhBu,0øuø1uB1=0j, i.e., a
Brownian motion conditioned on the eventB1=0. A Brown-
ian bridge can be realized as the processhBu−uB1,0øu
ø1j f4g. For additional information on Brownian motion and
its relation to the Feynman-Kac formula, the reader is ad-
vised to consult Appendix A as well as the cited bibliogra-
phy. To complete the description of Eq.s1d, we setxrsud
=x+sx8−xdu scalled the reference pathd, s=s"2b /m0d1/2, and
let r fpsx,x8 ;bd denote the density matrix for a similar free
particle.

The d-dimensional generalization of the Feynman-Kac
formula is rather trivial. One just considers an independent
Brownian bridge for each additional degree of freedom. To
keep the notation simple, in this paper we shall work exclu-
sively with one-dimensional systems. However, the reader
should notice that the main results of the paper remain true
or have straightforward generalizations for systems of arbi-
trary dimensionality.

In actual simulations, the Feynman-Kac formula is almost
always used in conjunction with Monte Carlo integration
methods[5] and, for this purpose, one needs to construct
rapidly convergent finite-dimensional approximations to the
stochastic integral described by Eq.(1). Ideally, such ap-
proximations should require knowledge of the potential only
for the computation of the density matrix or the partition
function of the physical system. This type of methods will be
called direct methods. The main question we address in the
present paper concerns the rate of convergence of a class of
discretization techniques as measured against the number of
variables utilized for path parametrization. Throughout the
paper, we assume that the potentialVsxd is an infinitely dif-
ferentiable and bounded from below function.

Until recently, the fastest direct method available(as order
of convergence) has been the trapezoidal Trotter discrete
path integral(DPI) method[6,7]. The technique is usually
derived by means of the Lie-Trotter product formula and an
appropriate short-time high-temperature approximation. The
formal asymptotic convergence of the trapezoidal Trotter
DPI method and of related DPI techniques was extensively
studied by Suzuki[8,9] and was found to beOs1/n2d. I shall
comment more on this method in Sec. II A. With the intro-
duction of the random series implementation of the
Feynman-Kac formula[10], faster methods became avail-
able. More precisely, two examples of direct path integral
techniques constructed around the Lévy-Ciesielski and the
Wiener-Fourier random series representations of the Brown-
ian motion and pertaining to the general class of reweighted
random series techniques were shown to haveOs1/n3d
asymptotic convergence[11,12]. In a recent Monte Carlo
simulation[13], the superior convergence of the reweighted
methods proved to be crucial for the accurate determination
of the potential, kinetic, and total energies of a highly quan-
tum mechanical Lennard-Jones cluster made up of 22 mol-
ecules of hydrogen at a temperature of 6 K.
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In this paper, I try to argue that, in fact, for infinitely
differentiable potentialsVsxd, there might exist direct short-
time high-temperature approximations of arbitrary polyno-
mial convergence order. The construction of such approxi-
mations is based upon an “experimental” theorem on the
pointwise convergence of Lie-Trotter product formulas. This
theorem is presented in Sec. II A, where it is used to derive a
set of functional equations that short-time approximations
must satisfy in order to have a given convergence order.
Unlike standard approaches based upon the construction of
“effective” potentials[5,14–18], the short-time approxima-
tions we consider in the present paper are based on carefully
designed finite-dimensional approximations to the Brownian
motion entering the Feynman-Kac formula. The potential it-
self is left unchanged. It is for this reason that the set of
equations mentioned above do not depend upon the potential.
The equations can be solved once for a given order and their
(not unique) solutions can be tabled and used in actual com-
putations for all potentials.

The main mathematical problem that is left unsolved in
this paper is the existence of finite-dimensional approxima-
tions to the Brownian motion that satisfy the functional equa-
tions for a given convergence order. To support the idea that
such solutions exist, I explicitly construct two short-time ap-
proximations to the density matrix having convergence or-
ders 3 and 4, respectively. A solution for the order 3 has been
previously derived[11], but the one I construct in the present
paper utilizes fewer path variables and fewer quadrature
points. The solution for the order 4 is derived as evidence
that the general problem of constructing finite-dimensional
approximations of arbitrary order is positively solvable. The
fourth-order method has numerical requirements similar to
the trapezoidal Trotter method(as ratio number of calls to
the potential over number of path variables). The method has
been recently utilized in the study of the heat capacity of the
Ne13 cluster[19].

In Sec. V, I verify by numerical simulations the
asymptotic convergence of the two short-time approxima-
tions discussed above. The definite agreement with the theo-
retical predictions is interpreted as proof that the theoretical
development in the present paper is mathematically sound. I
conclude the paper by speculating that sequences of short-
time approximations for increasing convergence orders(if
they exist) may provide exponentially fast approximations
for imaginary-time “propagated” wave functions, as mea-
sured against the number of path variables. I then analyze the
implications of this hypothesis with respect to the solvability
of the dynamical sign problem for real-time Feynman path
integrals on a classical computer.

In Appendix B, I derive the convergence constant for the
celebrated trapezoidal Trotter path integral technique. The
convergence constant is verified by numerical simulations.
The excellent agreement between theory and simulation is
interpreted as further evidence that Theorem 2 is a valid
mathematical statement(perhaps after further restrictions on
its hypothesis).

II. PRODUCT APPROXIMATIONS

In the first part of this section, I review the classical re-
sults of Suzuki concerning the order of convergence of a

special family of short-time approximations. These results
serve to illustrate the main difficulties regarding the con-
struction of short-time approximations having convergence
orders higher than 2. I then state a theorem concerning the
pointwise convergence of Lie-Trotter product formulas and
discuss its implications with respect to the design of short-
time approximations having superior convergence orders. In
Sec. II B, I introduce a special class of short-time approxi-
mations constructed by replacing the Brownian motion ap-
pearing in the Feynman-Kac formula with appropriate finite-
dimensional Gaussian processes. The functions utilized in
the construction of these finite-dimensional Gaussian pro-
cesses will become the unknown variables for the systems of
functional equations controlling the orders of convergence of
the associated short-time approximations. These systems of
functional equations are derived in Sec. III.

A. A convergence theorem for product formulas

One of the most fruitful approaches to constructing finite-
dimensional approximations to the quantum mechanical den-
sity matrix was given by Trotter[6]. It exploits the fact that
he−bH ;b.0j is a semigroup of operators onL2sRd, so that

e−sb1+b2dH = e−b1He−b2H s2d

or, in coordinate representation,

kxue−sb1+b2dHux8l =E
R

dzkxue−b1Huzlkzue−b2Hux8l. s3d

sIn this work, the Hamiltonian, the kinetic operator, and the
potential operator are denoted by the symbolsH, K, andV,
respectively.d The Trotter approximation theorem states that

e−bH = lim
n→`

fe−bK/ne−bV/ngn

in the sense of strong operator convergence. The quantity

e−bK/ne−bV/n

is called a short-time high-temperature approximation of the
exact density matrix operatore−bH/n.

There has been a lot of research on the rate of conver-
gence of the above approximation or of similar Trotter-like
formulas. Of particular significance is Suzuki’s work[8],
which treats the more general problem based on short-time
approximations of the form

e−bsK+Vd = e−a0bVe−b1bKe−a1bV
¯e−blbKe−albVf1 + Osbn+1dg,

s4d

where the sequences of non-negative real numbers
a0,a1, . . . ,al andb1,b2, . . . ,bl are palindromic and sum to 1.
Following Suzuki, a short-time approximationfnsK ,V;bd is
called of ordern if

e−bsK+Vd = fnsK,V;bdf1 + Osbn+1dg.

In this casef9g,
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e−bsK+Vd = F fnSK,V;
b

n
DGnF1 + OSbn+1

nn DG . s5d

fTo be rigorous, I mention that Eq.s5d has been proved for
bounded operatorsA and B. The respective theorem states
that the operator norm error of the finaln-term Lie-Trotter
product formula decays as fast as 1/nn. However, experience
shows that the orders of convergence are correctly predicted
even for the unbounded operatorsK andV. Moreover, if the
nonexistence theorem discussed below is true for bounded
operators, then it is also true for the more general class of
unbounded operators.g

The more general splitting formula given by Eq.(4) was
considered by Suzuki in order to produce path integral meth-
ods having faster asymptotic convergence. Unfortunately, a
theorem of Suzuki(see Theorem 3 of Ref.[8]) states the
following.

Theorem 1 (Suzuki nonexistence theorem). There are no
finite-length splitting formulas(4) of order 3 or more such
that the coefficientsa0,b1,a1, . . . are allreal and positive.

The Suzuki nonexistence theorem limits the asymptotic
order of convergence of this type of discrete path integral
methods to 2, order of convergence that is attained for the
following symmetric Trotter-Suzuki short-time approxima-
tion

e−bsK+Vd = e−1/2bVe−bKe−1/2bVf1 + Osb3dg s6d

sor the one obtained by permutingV with Kd.
The Suzuki nonexistence theorem serves to illustrate the

difficulty of constructing path integral methods having
asymptotic convergence better thanOs1/n2d. The idea of the
Trotter theorem is commonly employed in the physical and
chemical literature in order to generate faster integral meth-
ods starting with more general short-time approximations.
The general strategy is as follows. Based upon a certain
physical model, one constructs a short-time approximation
r0sx,x8 ;bd of the true density matrix. Then, one corrects
upon the short-time approximation with the help of the Lie-
Trotter product formula

rnsx,x8;bd

=E
R

dx1 ¯ E
R

dxn r0Sx,x1;
b

n + 1
D¯r0Sxn,x8;

b

n + 1
D .

s7d

If the short-time approximationr0sx,x8 ;bd is “better” than
the trapezoidal Trotter-Suzuki one, improvednth-order ap-
proximations to the exact density matrix may be obtained.
The notion of better approximation may refer not only to the
order of the short-time approximation but also to the overall
quality of the approximation for finiten f5g.

At this point, we remark that working with convergence
theorems in operator norm is difficult and not particularly
helpful for actual developments of better short-time approxi-
mations. Indeed, the short-time approximations are usually
constructed in the configuration space as symmetric integral
kernelsr0sx,x8 ;bd and many properties related to the norm
operator topology are not readily available. Therefore, it is

generally more convenient to use pointwise[in the space
R23 f0,`d of triplets sx,x8 ;bd] convergence theorems of the
type shown by the following theorem, which applies pro-
vided thatr0sx,x8 ;bd is symmetric.

Theorem 2 (experimental). Assume that there exists the
linear (automatically Hermitian) operatorTnc, called a con-
vergence operator, that associates to each infinitely differen-
tiable and compactly supported functioncsxd the square in-
tegrable function

sTncdsxd = lim
b→0+

E
R

fr0sx,x8;bd − rsx,x8;bdgcsx8ddx8

bn+1 .

s8d

Then

lim
n→`

sn + 1dnfrnsx,x8;bd − rsx,x8;bdg

= bn+1E
0

1

kxue−ubHTne
−s1−udbHux8ldu, s9d

wherernsx,x8 ;bd is defined by Eq.s7d.
Justification. Let Tn8sx,x8 ;bd be defined such that

r0sx,x8;bd = rsx,x8;bd + bn+1Tn8sx,x8;bd.

Lie-Trotter composing the above relationn times and using
the semigroup property of the exact density matrix, one ar-
gues that

rnsx,x8;bd = rsx,x8;bd +
bn+1

sn + 1dn+1o
j=0

n E
R

dx1E
R

dx2

3 rSx,x1;
jb

n + 1
DTn8Sx1,x2;

b

n + 1
D

3 rSx2,x8;
sn − jdb

n + 1
D + Os1/nn+1d.

In the limit n→`, one uses Eq.s8d to cast the previous
equation into

lim
n→`

sn + 1dnfrnsx,x8;bd − rsx,x8;bdg

= lim
n→`
H bn+1

n + 1o
j=0

n E
R

dx1rSx,x1;
jb

n + 1
D

3sTnrdSx1,x8;
sn − jdb

n + 1
DJ .

In the formula above, the operatorTn acts upon the density
matrix to the right through the first variable. Finally, one
notices that in the same limitn→`, the Riemann sum trans-
forms into an integral over the intervalf0,1g, so that
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lim
n→`

sn + 1dnfrnsx,x8;bd − rsx,x8;bdg

= bn+1E
0

1

duE
R

dx1rsx,x1;ubdsTnrdfx1,x8;s1 − udbg.

Of course, Eq.s9d is nothing else than the above identity in
Dirac’s bra-ket notation. h

Observation. It is needless to say that the above justifica-
tion is not a proof, nor is the hypothesis of the theorem
completely stated. In keeping with the scope of the paper
(and with the level of mathematical knowledge of the au-
thor), I only provide the basic reasons why the theorem must
hold. The main effort of the present work is toward justifying
the need for the theorems presented. The hope is that the
mathematician will find the theorems interesting and worth
investigating. However, all results deduced from this theo-
rem, including the convergence constant for the trapezoidal
Trotter path integral method(see Appendix B), are verified
by numerical simulations.

Theorem 2 facilitates the construction of more accurate
short-time approximations because it provides the exact con-
vergence constant of the respective path integral method in
coordinate representation. In general, for a given ordern, one
would like to design short-time approximationsr0sx,x8 ;bd
that minimize(as absolute value) the convergence constant.
In the ideal situation that the convergence constant is can-
celed, the order of convergence increases by one. In Sec. III,
we shall use Theorem 2 to derive the set of equations that
must be satisfied by the short-time approximations of a given
ordern.

B. A general class of short-time approximations

To make optimal use of Theorem 2, we need to devise
systematic ways of constructing symmetric and positive
short-time approximationsr0sx,x8 ;bd for any ordern. The
positivity of the short-time approximationr0sx,x8 ;bd is nec-
essary in order to avoid the appearance of the sign problem
in the Monte Carlo simulations. Development of such sys-
tematic ways has been previously attempted by Suzuki[20]
as well as by Makri and Miller[21], among others[7,17,22].
Unfortunately, all short-time approximations constructed so
far involve derivatives of the potentialVsxd, derivatives that
are either considered explicitly or introduced through the uti-
lization of commutators involving the kinetic and potential
operators. In fact, the higher the convergence order, the
higher is the order of the derivatives that are necessary. For
this reason, except for the Takahashi-Imada approximation
[17], such approaches have enjoyed only limited use. As
discussed in the Introduction, direct short-time high-
temperature approximations based solely on the use of the
potential function are more desirable.

In this section, I present an alternative approach to con-
structing direct short-time approximations, approach that is
related to the random series representation of the Brownian
motion [10]. Evidence that will be presented in the subse-
quent sections supports the claim that the approach is general
enough to accommodate any arbitrary convergence ordern.
In this work, unless otherwise specified,a0,a1, . . . denotes an

infinite sequence of independent identically distributed
(i.i.d.) standard normal variables. The short-time approxima-
tions are constructed by replacing the Brownian motion in
the Feynman-Kac formula with the finite-dimensional
Gaussian process:

B̃u = o
k=0

q

akL̃ksud. s10d

The continuous and piecewise smooth functionshL̃ksud ;0
økøqj are required to satisfy the following relations:

L̃0s0d = 0, L̃0s1d = 1,
s11d

L̃ks0d = L̃ks1d = 0 for 1ø k ø q.

The general expression of the short-time approximations we
study in the present paper is

r0sx,x8;bd = r fpsx,x8;bdE
R

dmsa1d ¯ E
R

dmsaqd

3expH− bE
0

1

VFxrsud + so
k=1

q

akL̃ksudGduJ ,

s12d

where

dmsakd = s2pd−1/2exp s− ak
2/2ddak

and where

xrsud = x + sx8 − xdL̃0sud

is a reference path connecting the pointsx andx8.
A second condition we enforce on the system of functions

hL̃ksud ;0økøqj is that

L̃0sud + L̃0s1 − ud = 1 s13d

and that the finite-dimensional Gaussian processok=1
q akL̃ksud

is invariant under the transformationu8=1−u. That is, we
require that

B̃u
0 = o

k=1

q

akL̃ksud=
d

o
k=1

q

akL̃ks1 − ud = B̃1−u
0 . s14d

The property described by Eq.s14d is analogous to the time
symmetry of the standard Brownian bridgeBu

0, which is the
fact that hB1−u

0 ,0øuø1j is also a Brownian bridge and is
equal in distribution tohBu

0,0øuø1j. As a direct conse-
quence of Eqs.s13d and s14d, the short-time approximation
r0sx,x8 ;bd given by Eq.s12d is symmetric under the permu-
tation of the variablesx and x8. This can be verified by
performing the substitutionu8=1−u in Eq. s12d. The time

symmetry of the finite Gaussian processok=1
q akL̃ksud can be

enforced, for example, by restricting the functions

hL̃ksud ;1økøqj to the class of symmetric and antisymmet-
ric functions.
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In this general setting, given a fixed integerq, Theorem 2

suggests that the functionshL̃ksud ;0økøqj should be cho-
sen such that the order of convergence be maximized. We
shall show in the following section that the system of func-
tional equations controlling the order of convergence isin-
dependentof the potentialVsxd. This system of equations

does not uniquely determine the functionshL̃ksud ;0økøqj.
For instance, it is a trivial matter to show that the short-time
approximation given by Eq.(12) is invariant under a linear

orthogonal transformation of the functionshL̃ksud ;1øk
øqj.

A consequence of the constraint given by Eq.(11) is the

fact that the distributions of the end pointsB1 and B̃1 are
identical and equal to that of the variablea0. In order to
reproduce in a better way the properties of the Brownian
motion, we may also require(but it is not necessary) that the

pairs of Gaussian variablessB1,M1d andsB̃1,M̃1d have equal

joint distribution. Here,M1 and M̃1 are the so-called path
centroids[25] (first moments of the Brownian motion and its
short-time approximation) and are defined by the equations

M1 =E
0

1

Budu and M̃1 =E
0

1

B̃udu,

respectively. To find the class of short-time approximations
for which this condition is “built in,” considerl0sud=1 and
l1sud=Î3s1−2ud, the first two normalized Legendre poly-
nomials on the intervalf0,1g. Let hlksudjkù2 be a set of
functions which together with the first two Legendre poly-
nomials make up an orthonormal set onf0,1g. The Ito-
Nisio theoremssee Theorem 6 of Appendix Ad says that

Bu=
d

a0u + a1
Î3us1 − ud + o

k=2

`

akLksud,

where

Lksud =E
0

u

lkstddt.

Let us notice that ifkù2, thenLks1d=0 fby the orthogonal-
ity of lksud on 1g and

E
0

1

Lksuddu= Lks1d −E
0

1

lksududu= 0

fby the orthogonality oflksud on ug. Therefore,B1=a0 and

M1 =
1

2
a0 +

Î3

6
a1

depend solely on the variablesa0 and a1. A little thought
shows that we can build in the correct joint distribution of
the end point and the path centroid by further restricting the

class of functionshL̃ksud ;0økøqj to those satisfying the
constraints

E
0

1

L̃ksuddu= 1/2 for k = 0,

E
0

1

L̃ksuddu= Î3/6 for k = 1, s15d

E
0

1

L̃ksuddu= 0 for 2ø k ø q.

Until now, we have assumed that the path averages of the
type

E
0

1

VFxrsud + so
k=1

q

akL̃ksudGdu

are evaluated exactly. For practical applications, one also
needs to devise a minimalist quadrature scheme specified by
some points 0øu1,u2, ¯ ,unq

ø1 and non-negative
weightsw1,w2, . . . ,wnq

such that the discrete short-time ap-
proximation

r0sx,x8;bd = r fpsx,x8;bdE
R

dmsa1d ¯ E
R

dmsaqd

3expH− bo
i=1

nq

wiVFxrsuid + so
k=1

q

akL̃ksuidGJ
s16d

has the desired convergence order. In the case of the discrete
approximations, the set of quadrature points and weights as

well as the values of the functionsL̃ksud at the quadrature
points are fitting parameters. For the reason of ensuring time
symmetry of the discrete formula, the quadrature scheme is
required to be symmetric, i.e., the sequencesu1,u2
−u1, . . . ,1−unq

andw1,w2, . . . ,wnq
must be palindromic.

III. POWER SERIES EXPANSION FOR IMAGINARY-TIME
PROPAGATED WAVE FUNCTIONS

In this section, we shall derive the system of functional

equations that must be satisfied by the functionsL̃ksud ap-
pearing in Eq.(10) in order for the associated short-time
approximation to have a convergence ordern. To settle some
terminology related to the utilization of the term “short
time,” we interpret the parameterb as a time variable(physi-
cally, "b has dimension of time) so that the density matrix
rsx,x8 ;bd constitutes the time-dependent Green’s function of
a diffusion equation, or imaginary-time Schrödinger equa-
tion. As Theorem 2 illustrates, it is necessary to establish the
power series expansion of the imaginary-time propagated
wave functions for the exact and the approximate propaga-
tors, respectively. I warn the reader that the power series
derived in the present section are only a bookkeeping device
for derivatives againstb and are not required to converge to
the actual imaginary-time propagated solutions. Moreover,
the potentialVsxd and its derivatives are required to have
finite Gaussian transforms. Actually, we require that
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1
Î2pa

E
R

e−z2/s2aduVskdsx + zdu j , ` s17d

for all xPR anda.0, as well as for all integerskù0 and
j ù1. This condition is necessary in order to ensure that we
recover the original potentials, derivatives, or products of
such functions from their Gaussian transforms, in the limit
that a→0 ssee Theorem 3 of Ref.f24gd.

A. The exact propagator

The power series expansion of the propagated wave func-
tion

kxue−bHucl =E
R

rsx,x8;bdcsx8ddx8 s18d

is of utmost interest for the present development. With the
help of the Feynman-Kac formulafaccording to Eq.sA3d of
Appendix Ag and the Taylor power series expansion, one
writes

kxue−bHucl = E expHF− bE
0

1

Vsx + sBudduGcsx + sB1dJ
= EHFo

j=0

`
1

j !
cs jdsxds jsB1d jG

3p
k=0

`

e−bfVskdsxd/k!gskMkJ ,

where

Mk =E
0

1

sBudkdu. s19d

A second Taylor expansion leads to

kxue−bHucl = EHFo
j=0

`
1

j !
cs jdsxds jsB1d jG

3p
k=0

` Fo
j=0

`
s− bd j

j !

Vskdsxd j

sk!d j skjsMkd jGJ .

We now expand the product in the preceding formula and
collect the coefficients corresponding to the same power of
b. Remembering thats=s"2/m0d1/2b1/2, one argues that the
powers ofb are of the formbm, wherem is a non-negative
half integer, i.e., an element of the setN2=hn/2 :nPNj. For
eachmPN2, m.0, define

Jm =Hs j1, j2, . . . ,j2md P N2m:o
k=1

2m

kjk = 2mJ . s20d

A little thought shows that

kxue−bHucl = o
mPN2

bm o
s j1,. . .,j2mdPJm

s− 1d j2+¯+j2ms"2/m0df j1+j3+2j4+¯+s2m−2d j2mg/2

3
cs j1dsxdVsxd j2fVs1dsxdg j3

¯ fVs2m−2dsxdg j2m

j1 ! j2 ! ¯ j2m ! s2!d j4s3!d j5
¯ fs2m − 2d!g j2m

EfsB1d j1sM0d j2sM1d j3
¯ sM2m−2d j2mg, s21d

with the convention that the term form=0 is csxd. The fact thatBu is a Gaussian distributed variable of mean zero implies that
if j1+ j3+2j4+¯ +s2m−2d j2m is odd, then

EfsB1d j1sM0d j2sM1d j3
¯ sM2m−2d j2mg = 0,

as can be verified by induction. Sincej1+ j3+2j4+¯ +s2m−2d j2m=2m−2s j2+¯ + j2md, one sees thatj1+ j3+2j4+¯ +s2m
−2d j2m is odd if and only if 2m is an odd integer. Thus, the sum in Eq.s21d can be restricted to the numbersmPN2 for which
2m is even, i.e., the sum can be restricted to the set of natural numbersN. Therefore,

E
R

rsx,x8;bdcsx8ddx8 = o
m=0

`

bm o
s j1,. . .,j2mdPJm

s− 1d j2+¯+j2ms"2/m0dm−s j2+¯+j2md

3
cs j1dsxdVsxd j2fVs1dsxdg j3

¯ fVs2m−2dsxdg j2m

j1 ! j2 ! ¯ j2m ! s2!d j4s3!d j5
¯ fs2m − 2d!g j2m

EfsB1d j1sM0d j2sM1d j3
¯ sM2m−2d j2mg. s22d
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Observation. The power series expansion for the
imaginary-time propagated wave function can also be de-
rived by expanding the operatore−bH in a power series. One
obtains

kxue−bHucl = o
m=0

`
1

m!
kxus− bHdmucl

= o
m=0

`

bm 1

m!
HF "2

2m0

d2

dx2 − VsxdGm

csxdJ .

s23d

Of course, the terms of the two series given by Eqs.s22d and
s23d are equal. However, as we shall see in the following
section, Eq.s22d applies in an almost unchanged form for all
short-time approximations defined by Eqs.s12d and s16d. In
contrast, there might be no formal analog of Eq.s23d for
such short-time approximations.

B. The approximate propagator and the identities controlling
its order of convergence

The only property used for the derivation of the power
series expansion of the exact propagator was the fact that the
Brownian motion is a Gaussian process. Since the approxi-
mation to the Brownian motion given by Eq.(10) is also a
Gaussian process, Eq.(22) remains true for the approximate
propagator, too. Therefore,

E
R

r0sx,x8;bdcsx8ddx8

= o
m=0

`

bm o
s j1,. . .,j2mdPJm

s− 1d j2+¯+j2ms"2/m0dm−s j2+¯+j2md

3
cs j1dsxdVsxd j2fVs1dsxdg j3

¯ fVs2m−2dsxdg j2m

j1 ! j2 ! ¯ j2m ! s2!d j4s3!d j5
¯ fs2m − 2d!g j2m

3EfsB̃1d j1sM̃0d j2sM̃1d j3
¯ sM̃2m−2d j2mg, s24d

where

M̃k =E
0

1

sB̃udkdu. s25d

If the discrete short-time approximation given by Eq.s16d is

employed, then Eq.s24d remains true, provided thatM̃k is
redefined to be

M̃k = o
i=1

nq

wisB̃ui
dk. s26d

Theorem 2 immediately implies the following statement.
Theorem 3. A short-time approximation of the types given

by Eq. (10) or (16) has convergence ordern if and only if

EfsB1d j1sM0d j2sM1d j3
¯ sM2m−2d j2mg

= EfsB̃1d j1sM̃0d j2sM̃1d j3
¯ sM̃2m−2d j2mg s27d

for all 2m-tuples of non-negative integerss j1, j2, . . . ,j2md
such that

o
k=1

2m

kjk = 2m

and 1ømøn.
The general problem that one would like to solve using

the theory developed so far is the following. Given a conver-

gence ordern, is there a finite system of functionsL̃ksud such
that the corresponding short-time approximation has ordern?
If the answer is yes, what is the minimal numberq of func-

tions L̃ksud necessary to achieve the respective convergence
order? Then, what is the minimal number of quadrature
points such that a discrete short-time approximation has con-
vergence ordern? The relevance of the questions asked in
the current paragraph will be further clarified in Sec. VI,
where we analyze the problem of minimizing the statistical
noise for real-time propagators.

IV. EXAMPLES OF SHORT-TIME APPROXIMATIONS
HAVING CONVERGENCE ORDER 3 OR 4

In this section, I try to present evidence in support of the
idea that the system of equations appearing in Theorem 3 for
a given ordern is always satisfied by some finite system of

functions L̃ksud. I do this by computing explicit numerical
solutions for the convergence orders 3 and 4. As apparent
from Table I, the number of equations that need to be verified
for a given ordern increases rapidly withn. In fact, the
number of elements ofJm is the number of distinct partitions
of 2m. With the help of the Hardy-Ramanujan asymptotic
formula [27], one deduces that the number of equations that
need to be verified for a given ordern behaves asymptoti-
cally as

o
m=1

n
1

8mÎ3
epÎ4m/3.

Therefore, the “by hand” approach utilized in the present
section is bound to fail even for slightly larger convergence
orders. By use of computers, one may hope to obtain solu-
tions for moderately large convergence orders. However, I
believe future work on the problem may reveal better strat-
egies for the computation of short-time approximations of
high convergence orders.

The two short-time approximations constructed in the
present section are called reweighted short-time approxima-

tions [11]. The defining features are the equalityL̃0sud=u

and the fact that the functionshL̃ksud ;1økøqj appearing in
Eq. (10) are required to satisfy the constraint
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o
k=1

q

L̃ksud2 = us1 − ud. s28d

The last equation stems from the condition that the Gaussian

variables Bu and B̃u have equal variances for eachu
P f0,1g sequal weightsd. As we shall see, if this constraint is

imposed, most of the functional equations for convergence
orders 3 and 4 are automatically satisfied. However, the
number of remaining equations still scales exponentially and,
for higher convergence orders, the constraint given by Eq.
s28d may actually become a nuisance.

One additional feature of the reweighted short-time ap-

proximations stems from the relationL̃0sud=u and facilitates
the numerical implementation of the associated Lie-Trotter
product formula given by Eq.(7). The following generaliza-
tion of a result of Predescu and Doll(see Theorem 2 of Ref.
[23]) is straightforward to prove.

Assume n is of the form n=2k−1 and let hal,j ;1ø l
øk,1ø j ø2l−1j and hbl,j ;1ø l øq,1ø j ø2kj be two inde-
pendent sets of i.i.d. standard normal variables. Let
hFl,jsud ; l ù1,1ø j ø2l−1j be the system of Schauder func-
tions [26] on the intervalf0,1g. The Schauder functions can
be generated by translations and dilatations as follows. Let
F1,1sud :R→R be defined by

F1,1sud = 5u, u P f0,1/2g
1 − u, u P s1/2,1g
0, elsewhere.

s29d

Then

Fl,jsud = 2−sl−1d/2F1,1s2l−1u − j + 1d s30d

for all l ù1 and 1ø j ø2l−1. Extend the functionshL̃lsud ;1
ø l øqj outside the intervalf0,1g by setting them to zero
fthe same way the first Schauder functionF1,1sud was ex-
tended to the whole real axis in Eq.s29dg and define

Gl,jsud = 2−k/2L̃ls2ku − j + 1d s31d

for 1ø l øq and 1ø j ø2k.
In these conditions, the following theorem holds.
Theorem 4. With the convention thatal,2l−1+1=0 and

bl,2k+1=0 for all l P1,k, we have

rnsx,x8;bd
r fpsx,x8;bd

=E
R

da1,1¯ E
R

dak,2k−1s2pd−n/2

3expS−
1

2o
l=1

k

o
j=1

2l−1

al,j
2 D

3 E
R

db1,1¯ E
R

dbq,2ks2pd−sn+1dq/2

3expS−
1

2o
l=1

q

o
j=1

2k

bl,j
2 DexpH− bE

0

1

VFxrsud

+ so
l=1

k

al,f2l−1ug+1Fl,f2l−1ug+1sud

+ so
l=1

q

bl,f2kug+1Gl,f2kug+1sudGduJ , s32d

wheref2l−1ug andf2kug are the integer parts of 2l−1u and 2ku,
respectively.

TABLE I. Indices of the equations that need to be verified for
various values ofm. Shown are the nonzero components of these
indices.

m=1 j2=1
j1=2

j4=1
j3=1,j1=1

m=2 j2=2
j2=1,j1=2

j1=4

j6=1
j5=1,j1=1
j4=1,j2=1
j4=1,j1=2

j3=2
m=3 j3=1,j2=1,j1=1

j3=1,j1=3
j2=3

j2=2,j1=2
j2=1,j1=4

j1=6

j8=1
j7=1,j1=1
j6=1,j2=1
j6=1,j1=2
j5=1,j3=1

j5=1,j2=1,j1=1
j5=1,j1=3

j4=2
j4=1,j3=1,j1=1

j4=1,j2=2
m=4 j4=1,j2=1,j1=2

j4=1,j1=4
j3=2,j2=1
j3=2,j1=2

j3=1,j2=2,j1=1
j3=1,j2=1,j1=3

j3=1,j1=5
j2=4

j2=3,j1=2
j2=2,j1=4
j2=1,j1=6

j1=8
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The reader can easily verify that Eq.(32) is a so-called
reweighted Lévy-Ciesielski path integral technique, as de-
fined in Ref.[11]. It has been argued[23] that this represen-
tation is more advantageous than the direct expression of
rnsx,x8 ;bd that is obtained from the Lie-Trotter product for-
mula, for practical implementations. The expression obtained
by Lie-Trotter composing the discrete version ofr0sx,x8 ;bd
given by Eq.(16) can also be put in the form of Eq.(32).
However, the one-dimensional integral at exponent is re-
placed by a quadrature sum. The quadrature scheme is speci-
fied by thenq2

k (not necessarily different) quadrature points

ui,j8 = 2−ksui + j − 1d, 1 ø i ø nq, 1 ø j ø 2k s33d

and the corresponding weights

wi,j8 = 2−kwi . s34d

The new quadrature pointsui,j8 are obtained by translations
and dilatationssmore precisely, contractionsd of the original
quadrature pointsui.

A. Reweighted short-time approximation having
convergence order 3

The equations that the functionsL̃ksud must satisfy in
order to generate a reweighted short-time approximation of
order 3 are those of the type shown by Eq.(27) for the
indicess j1, j2, . . . ,j2md presented in Table I, withm=1, 2, and
3. For a better understanding, we mention that in Table I we
only present the nonzero components of a given index
s j1, j2, . . . ,j2md. There are a total of2+5+11=18equations
that should be verified. However, given the special form of
the reweighted finite-dimensional approximation to the
Brownian motion, most of these equations are automatically
satisfied. As such, the equations for which the only nonzero
components arej1 and j2 are verified by all reweighted short-
time approximations. The discrete versions satisfy the re-
spective equations provided that

o
i=1

nq

wi = 1.

One actually checks that all equations form=2 as well as all
equations form=3, except for the one specified byj2=2, are
automatically satisfied. The discrete version verifies these
equations provided that the quadrature scheme is capable of
integrating exactly all polynomials 1,u, andu2. For example,
let us consider the equation specified byj6=1. We have

EFo
i=1

nq

wisB̃ui
d4G = o

i=1

nq

wiEfsB̃ui
d4g = 3o

i=1

nq

wiui
2.

By Eq. s27d as specialized forj6=1, the above value should
equalfsee Eq.sA2d of Appendix Ag

EFE
0

1

sBud4duG =E
0

1

EfsBud4gdu= 3E
0

1

u2du.

This shows that the quadrature technique must integrate ex-
actly the polynomialu2.

We now turn our attention to the remaining equation de-
fined by j3=2. One computes

EFE
0

1

B̃uduG2

= FE
0

1

uduG2

+ o
k=1

q FE
0

1

L̃ksudduG2

,

s35d

which should equal

EFE
0

1

BuduG2

= FE
0

1

uduG2

+ 3FE
0

1

us1 − udduG2

.

s36d

To compute the expected value of the square of the first
moment of the Brownian motion, write the Brownian motion
as a random series constructed via the Ito-Nisio theorem
from the Legendre orthogonal polynomials on the interval
f0,1g. Then, as discussed in the preceding section,

E
0

1

Budu= a0E
0

1

udu+ Î3a1E
0

1

us1 − uddu

and Eq.s36d follows. From Eqs.s35d and s36d, one easily
obtains the identity

o
k=1

q FE
0

1

L̃ksudduG2

=
1

12
.

A similar relation can be deduced for the discrete version but
with the integrals replaced by the corresponding quadrature
sums.

We can summarize the findings of the present section into
the following proposition.

Proposition 1. A reweighted short-time approximation has
order 3 if and only if

o
k=1

q FE
0

1

L̃ksudduG2

=
1

12
. s37d

A discrete reweighted short-time approximation has order 3
provided that the associated quadrature scheme integrates ex-
actly all polynomials of degree at most 2 and provided that

o
k=1

q Fo
i=1

nq

wiL̃ksuidG2

=
1

12
. s38d

We conclude the present section by constructing a mini-
malist reweighted short-time approximation having conver-
gence order 3. Because of the identity(28), the minimal

numberq of functionsL̃ksud capable of satisfying Eq.(37) is

2. Indeed, ifq=1, thenL̃1sud=fus1−udg1/2 and

FE
0

1

L̃1sudduG2

= p2/64Þ 1/12.

We now try a set of two functions of the form

L̃1sud = Îus1 − udcosfasu − 0.5dg, s39d
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L̃2sud = Îus1 − udsinfasu − 0.5dg.

The functionsL̃1sud and L̃2sud are orthogonal because the
first is symmetric under the transformationu8=1−u, whereas
the second is antisymmetric. The constanta is then deter-
mined by Eq.(37) and has been evaluated with the help of
the Levenberg-Marquardt algorithm, as implemented in
Mathcad[28]. The solution has the approximate value

a < 3.056 620 471. s40d

To design a minimalist discrete short-time approximation
of order 3, we consider an arbitrary symmetric quadrature
rule on the intervalf0,1g that integrates exactly all polyno-
mials of degree less or equal to 2. Then, we find the value of
a that satisfies Eq.(38) for the chosen quadrature technique.
It is not difficult to argue that the minimal number of quadra-
ture points in the open intervals0,0.5d must be 1. The reason

is that the values of the functionsL̃1sud and L̃2sud at the
pointsu=0 andu=0.5 do not depend upon the parametera.
Thus, Eq.(38) cannot be satisfied if there are no quadrature
points located inside the open intervals0,0.5d.

The quadrature rule is taken to be the two-point Gauss-
Legendre rule on the intervalf0,1g, quadrature rule that in-
tegrates exactly all polynomials of degree less or equal to 3.
The appropriate value for the parametera is then determined
from Eq. (38) and is found to be

a < 2.720 699 046. s41d

The quadrature scheme is given in Table II, for ease of ref-
erence.

As shown by Eq.(32), the number of path variables en-
tering the expression ofrnsx,x8 ;bd is sq+1dn+q=3n+2,
whereas the number of quadrature points[see Eq.(33)] is
nqsn+1d=2n+2. Thus, for large enoughn, the ratio s2n
+2d / s3n+2d approaches 2/3, value that is smaller than the
one for the trapezoidal Trotter discrete path integral method.
Therefore, the method described in the present paragraph has
fewer numerical requirements than the trapezoidal Trotter
discrete path integral method for equal numbers of path vari-
ables, yet it achieves cubic convergence for smooth enough
potentials.

B. Reweighted short-time approximation having convergence
order 4

Because the number of equations to be verified increases
significantly for the reweighted short-time approximations of

order 4, we choose to approximate the Brownian motion by
the finite-dimensional process

B̃u=
d

a0u + a1
Î3us1 − ud + o

k=2

q

akL̃ksud, s42d

where the functionsL̃ksud satisfy the equations

E
0

1

L̃ksuddu= 0 for 2ø k ø q.

As discussed in Sec. II B, in this case the variables

sB̃0,M̃0,M̃1d have the same joint distribution assB0,M0,M1d
snotice thatM̃0 and M0 are equal constantsd. This remains
true of the discrete reweighted short-time approximations
provided that the quadrature scheme integrates exactly the
polynomials of degree at most 2 as well as the functions

L̃ksud, for 2økøq.
Using the special form of Eq.(42), it is not difficult to

verify that all the equations in Table I are automatically sat-
isfied with the exception of the one specified byj4=2. This
remains true of the discrete versions provided that the
quadrature scheme integrates exactly all polynomials of de-

gree at most 3 as well as the functionsL̃ksud for 2økøq.
For the sake of an example, let us consider the equation
specified byj5=1,j3=1, which is the most difficult to verify.
I leave it for the reader to argue that, in general,

ES o
i1,i2,i3,i4

ai1
ai2

ai3
ai4

Mi1,i2,i3,i4D
= o

i,j
sMi,i,j ,j + Mi,j ,i,j + Mi,j ,j ,id. s43d

Using Eq.s43d, one computes

ESE
0

1

B̃uduE
0

1

B̃u
3duD

= 3o
i,j=0

q FE
0

1

L̃isudduE
0

1

L̃isudL̃ jsud2duG
= 3o

i=0

q FE
0

1

L̃isudduE
0

1

L̃isududuG
=

1

2
+

1

8
+ 3o

i=2

q FE
0

1

L̃isudduE
0

1

L̃isududuG
=

1

2
+

1

8
,

where we used the equality

o
j=0

q

L̃ jsud2 = u.

The above equation remains true of the discrete versions,
too. For the full Brownian motion, one computes via the

TABLE II. Quadrature points and weights for the minimalist
discrete short-time approximation of order 3. The points and
weights are those for the two-point Gauss-Legendre rule on the
interval f0,1g.

i 1 2

ui 0.211 324 865 0.788 675 135

wi 0.500 000 000 0.500 000 000
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random series representation based on the Legendre orthogo-
nal polynomials on the intervalf0,1g,

ESE
0

1

BuduE
0

1

Bu
3duD =

1

2
+

1

8
,

and the fact that the equationj5=1,j3=1 is satisfied follows.
We now turn our attention to the equation specified by

j4=2. One computes

ESE
0

1

B̃u
2duD2

= EFE
0

1 So
l=0

q

aiL̃isudD2

duG2

= ESo
i,j=0

q

aiajci,jD2

,

where

ci,j =E
0

1

L̃isudL̃ jsuddu.

Using Eq.s43d, one deduces

ESE
0

1

B̃u
2duD2

= 2o
i,j=0

q

ci,j
2 + So

i=0

q

ci,iD2

.

At this moment it is useful to remember thatL̃0sud=u and

L̃1sud=Î3us1−ud. Moreover, notice that Eq.(28) implies

o
i=0

q

ci,i =E
0

1

fu2 + us1 − udgdu=
1

2
.

Therefore,

EFE
0

1

B̃u
2duG2

= 2o
i,j=0

q FE
0

1

L̃isudL̃ jsudduG2

+
1

4
.

For the full Brownian motion, one computes via the
Wiener-Fourier series

ESE
0

1

Bu
2duD2

=
2

9
+ 4o

k=1

` FE
0

1

uÎ 2

p2

sinskpud
k

duG2

+ 2o
k=1

` FE
0

1 2

p2

sinskpud2

k2 duG2

+
1

4

=
2

9
+

8

p4o
k=1

`
1

k4 +
2

p4o
k=1

`
1

k4 +
1

4

=
2

9
+

1

9
+

1

4
.

Then, the equality

ESE
0

1

B̃u
2duD2

= ESE
0

1

Bu
2duD2

implies

o
i,j=0

q FE
0

1

L̃isudL̃ jsudduG2

=
1

6
. s44d

With the one-dimensional integrals replaced by appropriate
quadrature sums, Eq.s44d must also be satisfied by all dis-
crete short-time approximations of order 4. Remember that
the quadrature scheme is assumed to integrate exactly all the

polynomials of degree at most 3 and all the functionsL̃ksud
for 2økøq.

In the remainder of this section, we construct an example
of reweighted short-time approximation of order 4. Clearly,
we cannot setq=2 in Eq. (42) because then

L̃2sud = hus1 − udf1 − 3us1 − udgj1/2,

as follows from Eq.s28d, and consequently,

E
0

1

L̃2sudduÞ 0.

Thus, we setq=3 and look for functions of the form

L̃2sud = rsudcosfa1su − 0.5d + a2su − 0.5d3g,
s45d

L̃3sud = rsudsin fa1su − 0.5d + a2su − 0.5d3g,

where

rsud = hus1 − udf1 − 3us1 − udgj1/2.

The functionsL̃2sud and L̃3sud are orthogonal because the
first is symmetric under the transformationu8=1−u,
whereas the second is antisymmetric. The integral overf0,1g
of the function L̃3sud is zero by antisymmetry. Then, the
constantsa1 anda2 are determined from the system of equa-
tions

E
0

1

L̃2suddu= 0, s46ad

o
i,j=0

3 FE
0

1

L̃isudL̃ jsudduG2

=
1

6
. s46bd

The values of the constantsa1 anda2 have been determined
numerically to be

a1 < 5.768 064 999 and a2 < 13.492 146 69.s47d

Let us now design a minimalist discrete short-time ap-
proximation of order 4. Given an arbitrary symmetric
quadrature technique that integrates exactly all polynomials
of degree less or equal to 3, we determine new values fora1
anda2 from the system of equations

o
l=1

nq

wlL̃2suld = 0, s48ad
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o
i,j=0

3 Fo
l=1

nq

wlL̃isuldL̃ jsuldG2

=
1

6
. s48bd

Because there are two equations, it is easy to argue that the
number of quadrature points lying in the open interval
s0,0.5d must be at least 2. Consistent with this observation,
the quadrature technique is chosen to be the four-point
Gauss-Legendre technique on the intervalf0,1g. This
quadrature technique integrates exactly all the polynomials
of degree at most 7. The new values for the parametersa1
and a2 are then determined by solving the system of equa-
tions given by Eq.(48) for the chosen quadrature scheme.
The solution of the system of equations is given by

a1 < 6.379 716 466 and a2 < 8.160 188 248.s49d

The quadrature weights and points are presented in Table III,
for ease of reference.

As shown by Eq.(32), the number of path variables en-
tering the expression ofrnsx,x8 ;bd is sq+1dn+q=4n+3,
whereas the number of quadrature points[see Eq.(33)] is
nqsn+1d=4n+4. Thus, for large enoughn, the ratio s4n
+4d / s4n+3d approaches 1, value that equals the one for the
trapezoidal Trotter discrete path integral method. Therefore,
the fourth-order method has the same numerical require-
ments as the trapezoidal Trotter discrete path integral method
for equal numbers of path variables, yet it achieves quartic
convergence for smooth enough potentials.

V. NUMERICAL VERIFICATION OF THE ASYMPTOTIC
ORDERS OF CONVERGENCE

One of the main advantages of the Lie-Trotter product
formula consists of the fact that, for low-dimensional sys-
tems, the evaluation of the density matrix and related prop-
erties can be performed accurately by means of the numeri-
cal matrix multiplication(NMM ) method[29,30]. We shall
use the NMM method to computenth-order approximations
to the partition function of the type

Zn
sndsbd =E

R
rn

sndsx,x;bddx

for one-dimensional systems. We follow closely the simula-
tion strategy employed in Ref.f12g for a similar numerical
study of asymptotic orders of convergence. The symbolsnd
to the exponent serves to differentiate between short-time
approximations of different ordersn.

The main steps of the NMM algorithm are as follows.
First, one restricts the system to an intervalfa,bg and con-
siders a division of the interval of the type

xi = a + isb − ad/M, 0 ø i ø M .

Next, one computes and stores the symmetric square matrix
of entries

Ai,j =
b − a

M
r0

sndSxi,xj ;
b

n + 1
D, 0 ø i, j ø M .

The value of the partition function can then be recovered as

Zn
sndsbd = trsAn+1d.

By computer experimentation, the intervalfa,bg and the size
M of the division are chosen such that the computation of the
partition function is performed with the required accuracy. A
fast computation of the powers of the matrixA can be
achieved by exploiting the ruleAm+n=sAmdn. For more de-
tails, the reader is referred to the cited literature.

The Gaussian integrals appearing in the expression of the
discrete reweighted short-time approximation

r0
sndsx,x8;bd = r fpsx,x8;bdE

R
dmsa1d ¯ E

R
dmsaqd

3expH− bo
i=1

nq

wiVFxrsuid + so
k=1

q

akL̃ksuidGJ
can be evaluated by means of the Gauss-Hermite quadrature
techniquef31g for small enoughq sin our case,q is 2 for the
approximation of order 3 and 3 for the approximation of
order 4d. For the purpose of establishing the asymptotic con-
vergence of the partition functions, it was found that a num-
ber of ten quadrature points for each dimension is sufficient
for both short-time approximations studied in the present
section. This is so because the errors due to the Gauss-
Hermite quadrature approximation quickly vanish asb / sn
+1d→0.

Once the partition functions are evaluated, we compute
the quantities

R2m+1
snd sbd = Z2m+1

snd sbd/Zsbd s50d

and

am
snd = m2 lnF1 +

R2m−1
snd sbd − R2m+1

snd sbd
R2m+1

snd sbd − 1
G .

As demonstrated in Ref.f10g, the slope ofam
snd as a function

of m converges to the convergence order. We want to verify
whether or not this convergence order isn. The exact parti-
tion function Zsbd necessary in Eq.s50d is evaluated either
by variational methods or by employing a largem.

The first example studied is the quartic potentialVsxd
=x4/2. The following values of the physical constants(in
atomic units) have been utilized:"=1, m0=1, and b=10.
The second example studied consists of a particle trapped on
a line between two atoms separated by a distanceL [32]. The

TABLE III. Quadrature points and weights for the minimalist
discrete short-time approximation of order 4. The quadrature points
and weights are those for the four-point Gauss-Legendre technique
on the intervalf0,1g.

i 1 2 3 4

ui 0.069 431 844 0.330 009 478 0.669 990 522 0.930 568 156

wi 0.173 927 423 0.326072 577 0.326 072 577 0.173 927 423
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particle is assumed to interact with the fixed atoms through
pairwise Lennard-Jones potentials. The resulting cage is de-
scribed by the potential

Vsxd = 4eFSs

x
D12

− Ss

x
D6

+ S s

x − L
D12

− S s

x − L
D6G

if 0 ,x,L andVsxd= +` otherwise. The parameters of the
system are chosen to be those for the He atom. We setm0
=4 amu, e /kB=10.22 K, s=2.556 Å, andL=7.153 Å. At
T=5.11 K, which is the temperature utilized in the present
computations, the system is practically in its ground state.
For more details regarding the present simulations, the
reader is advised to consult Ref.f12g.

As Figs. 1 and 2 show, the orders of convergence pre-
dicted in the preceding section are well verified. I interpret
these results as proof that the mathematical analysis per-
formed in the present paper is sound. The He cage problem is
interesting because the Lennard-Jones potential lies outside
the class of potentials for which the theory was developed.
As explained in Ref.[12], the density matrix of the Lennard-
Jones potential has an exponential decay near singularities
and, therefore, the behavior of the potential near singularities
is not important as far as the polynomial convergence of
imaginary-time path integral methods is concerned.

VI. CONCLUSIONS

In this paper, I have considered the problem of construct-
ing direct short-time approximations to the density matrix of

a physical system of arbitrary convergence orders. I have
shown that the problem can be reduced to the construction of
finite-dimensional approximations to the Brownian motion
that satisfy a certain system of functional equations. Using
the developed theory, I have constructed two examples of
reweighted short-time approximations having convergence
orders 3 and 4. The predicted orders of convergence have
been verified by numerical simulations. In Appendix B, I
have derived the convergence constant for the trapezoidal
Trotter path integral method. The predicted convergence con-
stant has also been verified by numerical simulations.

For imaginary-time path integral simulations, the reader
may object that the use of a path integral technique having
faster asymptotic convergence is not a significant algorithmic
improvement because the final computational effort is even-
tually controlled by the rate of convergence of the Monte
Carlo integration method. The computational effort, as mea-
sured against the number of calls to the potentialVsxd, can be
evaluated as follows. To attain a given absolute errore, one
must utilize a number of

n = const/e1/n

path variablesshere, const is someproportionality con-
stantd. The cost to evaluate the average potential for a
given path is equal to the number of quadrature points,
which, in turn, is proportional to the number of path vari-
ablesfhere, we do not take into account the cost for the
computation of the paths, which scales asn log2snd, but
which is usually negligible for the values ofn commonly
employed in practiceg. Thus, the cost for a single path
evaluation isconst/e1/n. This cost is to be multiplied by
the number of Monte Carlo steps, which is given by the
formula

NoMC = const/e2,

assuming that the variance of the Monte Carlo method does
not depend upon the number of path variables. Thus, the
total cost, defined as the number of calls to the potential
necessary to attain a given error, is

Cost = const3 e−s2+1/nd, s51d

wheren is the convergence order of thedirect path integral
method. Equations51d shows that we cannot beat the slow
convergence of the Monte Carlo integration scheme by in-
creasing the order of convergence of the path integral tech-
nique. The total cost changes frome−2.5 to e−2.25 only, as we
switch from the trapezoidal Trotter to the fourth-order
method designed in the present paper.

However, the methods designed in the present paper are
still useful because the improvement, even if marginal,
comes “free of any charge.” Indeed, as shown in Sec. IV B,
the ratio number of quadrature points over number of path
variables is 1(for n large enough) for both the trapezoidal
Trotter and the discrete fourth-order method introduced in
the present paper. Therefore, there is no loss of efficiency in
employing the discrete fourth-order method even for those
potentials for which the optimal convergence order is not
attained. Because no additional cost is incurred even in the

FIG. 1. The convergence orders of the two discrete short-time
approximations for the quartic potential. The plotting symbols are
shown only for every tenth data point actually computed.

FIG. 2. As in Fig. 1 for the He cage problem.
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most disadvantageous situations, the discrete fourth-order
short-time approximation is a natural replacement for the
trapezoidal Trotter short-time approximation in all path inte-
gral simulations.

At a more general level, the present development may be
relevant for the problem of performing real-time path inte-
gral simulations[33]. In this case, the asymptotic rate of
convergence iscrucial because the noise in the Monte Carlo
simulation not only depends upon the number of path vari-
ables, but actually increases exponentially fast with the num-
ber of path variables. This is the statement of the well-known
dynamical sign problem[34].

Let us assume that for a given convergence ordern, there

is a finite system of functionshL̃ksud ;0økøqnj that gener-
ates the short-time approximation of ordern:

r0
sndsx,x8;bd = r fpsx,x8;bdE

R
dmssa1d ¯ E

R
dmssaqd

3expH− bE
0

1

VFxrsud + o
k=1

qn

akL̃ksudGduJ ,

s52d

where

dmssakd = s2ps2d−1/2expf− ak
2/s2s2dgdak.

Notice that in Eq.s52d we have performed a substitution of
variablesak8=sak so that the dependence of the spread of the
paths withb is no longer buried in the potentialfremember,
s=s"2b /m0d1/2g. In principle, this transformation should al-
low us to extend the above formulas to complex-valuedb.
We ask the question of whether or not it is more optimal to
give up the use of the Lie-Trotter product formula altogether
and instead consider the sequence of approximations

r0
sndsx,x8;bd → rsx,x8;bd as n → `. s53d

If with appropriate restrictions onVsxd and csxd the series
appearing in Eq.s22d is analytic inb, it is straightforward to
see that

E
R

r0
sndsx,x8;bdcsx8ddx8 → E

R
rsx,x8;bdcsx8ddx8 s54d

exponentially fast as measured againstn.
It is then apparent that a favorable scaling ofqn with n,

such as, for instance, a polynomial scaling, may strongly
alleviate the dynamical sign problem. As the Hardy-
Ramanujan formula shows, the number of equations that

must by satisfied by the system of functionshL̃ksud ;1øk
øqnj increases withn faster than any polynomial. However,
this does not necessarily imply thatqn increases withn at the
same rate. In the examples constructed in Sec. IV, we have
been able to accommodate the 18 equations for order 3 with
only two functions, whereas the 40 equations for order 4
were accommodated with three functions. In both cases, the
actual number of functions was much lower than the number
of equations. I hope this short analysis justifies my belief that

future research on the subject is worth the time of investiga-
tion and may lead to significant progress in the area of real-
time path integral simulations.
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APPENDIX A: SOME MATHEMATICAL FACTS
ABOUT THE BROWNIAN MOTION

AND THE FEYNMAN-KAC FORMULA
In this appendix, I review the definition and some of the

basic properties of the Brownian motion. In addition, an al-
ternative formulation of the Feynman-Kac formula and the
random series construction of the Brownian motion are pre-
sented. For further information, the reader is advised to con-
sult the cited mathematical literature[3,4,26]. Chapters I and
II of Ref. [35] also contain an in-depth introduction to
Brownian motion and its relation to the Feynman-Kac for-
mula.

A standard Brownian motion is defined as a stochastic
processhBu,uù0j that satisfies the following conditions.

(a) Given 0øu0,u1, ¯ ,un an arbitrary finite se-
quence of increasing times, the initial positionBu0

, and the
position incrementsBu1

−Bu0
, . . . ,Bun

−Bun−1
are independent.

(b) If s,uù0 andfa,bg,R is some arbitrary interval,
then

PsBu+s − Bu P fa,bgd =E
a

b 1
Î2ps

expS−
x2

2s
Ddx.

(c) With probability one, the Brownian motion sam-
pling pathsBu are continuous.

The existence of a stochastic process satisfying the above
conditions has been first proved by Wiener[36] in 1923.

If B0=0 with probability one, then the Brownian motion
is said to start at zero. In the present work,Bu always denotes
a standard Brownian motion starting at zero. The conditions
(a) and (b) above are sufficient to demonstrate that the
Brownian motion starting at zero is a Gaussian process with
joint finite distributions given by

PsBu1
P fa1,b1g, . . . ,Bun

P fan,bngd

=E
a1

b1

dx1 ¯ E
an

bn

dxnp
i=1

n

pui−ui−1
sxi−1,xid, sA1d

whereu0=0, x0=0, and

pusa,bd =
1

Î2pu
expF−

sb − ad2

2u
G .

Equation (A1) can be utilized to compute the expected
values of moments of standard Brownian motions starting at
zero. For example,
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EfsBud4g =E
R

1
Î2pu

expS−
x2

2u
Dx4dx= 3u2,

where we have used the fact thatBu is a Gaussian variable
centered about origin and of varianceu, as follows from Eq.
sA1d. Therefore,

EFE
0

1

sBud4duG =E
0

1

EfsBud4gdu=E
0

1

3u2du= 1.

sA2d

A standard Brownian bridgehBu
0,0øuø1j is defined as a

standard Brownian motion starting at zero that is also condi-
tioned to end up at zero at timeu=1:

hBu
0,0 ø u ø 1j = hBu,0 ø u ø 1uB1 = 0j.

A standard Brownian bridge can be constructed from a stan-
dard Brownian motion starting at zero as the differenceBu
−uB1. More precisely, it can be demonstrated that

hBu
0,0 ø u ø 1j=

d

hBu − uB1,0 ø u ø 1j,

where the symbol =
d

means that the left- and right-hand side
processes are equal in distributionshave equal finite-
dimensional distributionsd and have continuous sampling
paths with probability one. Moreover, the random variables
B1 andBu

0=Bu−uB1 are independent. It follows that given a
Brownian bridgeBu

0 and an independent standard normal
variablez swhich plays the role ofB1d, the sum of indepen-
dent variablesBu=Bu

0+uz is equal in distribution to a stan-
dard Brownian motion starting at zero. Thus,

hBu,0 ø u ø 1j=
d

hBu
0 + uz,0 ø 1 ø uj

and z=
d

B1 sbecauseB1
0=0, by the very definition of the

Brownian bridged.
As Simon often emphasizes[3], Eq. (1) presented in the

Introduction is only one of the many equivalent formulations
of the Feynman-Kac formula. Another popular formulation,
which utilizes the full Brownian motion rather than the
Brownian bridge, will be presented shortly. Letcsxd be an
arbitrary square integrable function. From Eq.(1), we have

kxue−bHucl

=E
R

dx8
1

Î2ps2
expF−

sx8 − xd2

2s2 G
3E expH− bE

0

1

Vfx + sx8 − xdu + sBu
0gduJcsx8d.

Performing the substitutionx8=x+sz, we obtain

kxue−bHucl

=E
R

dzE
1

Î2p
exps− z2/2d

3expH− bE
0

1

Vfx + szu+ sBu
0gduJcsx + szd.

Notice that the variablesz and Bu
0, as they appear in the

preceding equation, are independent. Moreover,z is a Gauss-
ian variable of mean zero and variance 1. It follows thatzu
+Bu

0 is equal in distribution to a Brownian motionBu starting
at zero. In these conditions, the Feynman-Kac formula reads

kxue−bHucl = Efexpf− bE
0

1

Vsx + sBuddug csx + sB1dg,

sA3d

where the symbolE denotes the expected value with respect
to the entire Brownian motionBu.

I conclude this appendix by presenting the statement of
the Ito-Nisio theorem[35,37], a theorem that gives an ex-
plicit construction of a standard Brownian motion over the
interval f0,1g as a random series.

Theorem 5(Ito-Nisio). Let hlkstdjkù0 be any orthonormal
basis inL2f0,1g, let

Lksud =E
0

u

lkstddt,

and letā: =ha0,a1, . . .j be a sequence of distributed standard
normal random variables. Then, the random series
ok=0

` akLksud is uniformly convergent almost surely and equal
in distribution over the intervalf0,1g with a standard Brown-
ian motionBu starting at zero.

To express the Feynman-Kac formula as the expected
value of a functional of a random series, it is convenient to
work with those orthonormal basishlkstdjkù0 for which
l0std=1 only. ThenL0sud=u and

Lks1d =E
0

1

lkstddt =E
0

1

lkstdl0stddt = 0

for all kù1. In these conditions, the Ito-Nisio theorem says
that

o
k=1

`

akLksud = o
k=0

`

akLksud − a0u=
d

Bu − uB1.

The last term in the preceding equation has been discussed in
a previous paragraph to be equal in distribution to a Brown-
ian bridge. It follows that ifl0std=1, then

Bu
0=

d

o
k=1

`

akLksud, 0 ø u ø 1,

equality in distribution that provides an explicit random se-
ries construction for the standard Brownian bridge.

In these conditions, ifV is the set of all sequencesā
ª ha1,a2, . . .j and if
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dPfāg = p
k=1

`
1

Î2p
e−ak

2/2dak

is the probability measure onV associated with the sequence
of independent random variablesā: =ha1,a2, . . .j, then the
Feynman-Kac formula given by Eq.s1d reads

rsx,x8;bd
r fpsx,x8;bd

=E
V

dPfāg

3expH− bE
0

1

VFxrsud + so
k=1

`

akLksudGduJ .

sA4d

EquationsA4d is called the random series representation of
the Feynman-Kac formulaf10g.

APPENDIX B: THE CONVERGENCE CONSTANT
FOR THE TRAPEZOIDAL TROTTER APPROXIMATION

The short-time approximation for the trapezoidal Trotter
path integral method is given by the expression

r0
TTsx,x8;bd = r fpsx,x8;bdexpF− b

Vsxd + Vsx8d
2

G .

This short-time approximation is of the type given by Eq.
s16d, provided that the quadrature technique is specified by
the two pointsu0=0 andu1=1, and the weightsw0=1/2 and
w1=1/2, respectively. The approximation is independent of

the functionshL̃ksud ;0økøqj, because the end points of
these functions are specified by Eq.s11d. We can therefore
consider that the functions are those for the third-order re-
weighted approximation, or one may work with a full ran-
dom series representation of the Brownian motion of the type

a0u + o
k=1

`

akLksud,

as provided by the Ito-Nisio theorem. It does not make any
difference. The trapezoidal Trotter approximation is just a
discrete version of the third-order reweighted technique dis-
cussed in Sec. IV A or of the full Feynman-Kac formula.

Using the fact that the trapezoidal quadrature rule given
above integrates exactly the polynomials 1 andu, the reader
may argue that all equations specified in Table I withm
=1,2,3 aresatisfied, except for the following(for all, m=3).

(1) Casej6=1: For the full Brownian motion, one com-
putes

EsM4d = EE
0

1

sBud4du=E
0

1

EsBud4du= 3E
0

1

u2du= 1.

The trapezoidal rule produces a different result

3
2s02 + 12d = 3

2 .

(2) Casej5=1 and j1=1: For the full Brownian motion,
one computes

EsB1M3d = EfB1E
0

1

sBud3dug = 3E
0

1

u2du= 1.

The trapezoidal rule produces

3f 1
2s02 + 12dg = 3

2 .

(3) Casej4=1 and j1=2: For the full Brownian motion,
we have

EfsB1d2M2g = EfsB1d2E
0

1

sBud2dug =E
0

1

s2u2 + uddu=
2

3
+

1

2
.

The trapezoidal rule produces

1
2s2 + 1d = 3

2 .

(4) Case j3=2: For the full Brownian motion, we have
[see Eq.(36)]

EfsM1d2g = ESE
0

1

BuduD2

=
1

4
+

1

12
.

The trapezoidal rule produces

Ef 1
2s0 + B1dg2 = 1

4 .

With the help of the series given by Eqs.(22) and(24), we
compute

E
R

fr0
TTsx,x8;bd − rsx,x8;bdgcsx8ddx8

= b3H s− 1d1

4!
S3

2
− 1DS "2

m0
D2

Vs4dsxdcsxd

+
s− 1d1

3!
S3

2
− 1DS "2

m0
D2

Vs3dsxdcs1dsxd

+
s− 1d1

2 ! 2!
S1 −

2

3
DS "2

m0
D2

Vs2dsxdcs2dsxd

+
s− 1d2

2!
S−

1

12
D "2

m0
fVs1dsxdg2csxdJ + Osb4d.

From the equation above, we learn that the trapezoidal
Trotter path integral technique has convergence order 2.
Moreover, the convergence operator for the trapezoidal Trot-
ter short-time approximation is

T2 = −
1

48
S "2

m0
D2

Vs4dsxd −
1

24

"2

m0
fVs1dsxdg2

−
1

12
S "2

m0
D2 d

dx
SVs2dsxd

d

dx
D . sB1d

The above form of Eq.sB1d emphasizes the Hermiticity of
the convergence operator. According to Theorem 2, the fol-
lowing result is expected to hold.

Theorem 6. The convergence constant for the trapezoidal
Trotter path integral method is given by the formula
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lim
n→`

sn + 1d2frn
TTsx,x8;bd − rsx,x8;bdg

= b3E
0

1

kxue−ubHT2e
−s1−udbHux8ldu, sB2d

where the operatorT2 is defined by Eq.sB1d.
For the purpose of numerical verification, we derive the

convergence constant for the partition function. Though one
can work with the full density matrix and employ the Bloch
equation whenever necessary, it seems that it is more conve-
nient to utilize an eigenfunction expansion for the density
matrix. Settingx8=x and integrating overx in Eq. (B2), we
obtain, after several simplifications and an integration by
parts,

lim
n→`

sn + 1d2fZn
TTsbd − Zsbdg

=
1

24

"2b3

m0
o
k=0

`

e−bEkE
R
H−

"2

2m0
Vs4dsxdcksxd2

− fVs1dsxdg2cksxd2

+
2"2

m0
Vs2dsxdF d

dx
cksxdG2Jdx. sB3d

Integrating by parts three times, one argues that

−
"2

2m0
E

R
Vs4dsxdcksxd2dx

=
"2

m0
E

R
Vs1dsxd

d

dx
HFcksxd

d2

dx2cksxdG
+ F d

dx
cksxdG2Jdx,

whereas, integrating by parts once, we obtain

2"2

m0
E

R
Vs2dsxdF d

dx
cksxdG2

dx

= −
2"2

m0
E

R
Vs1dsxd

d

dx
F d

dx
cksxdG2

dx.

Adding the last two equations and simplifying, we get

−
"2

2m0
E

R
Vs4dsxdcksxd2dx+

2"2

m0
E

R
Vs2dsxdF d

dx
cksxdG2

dx

=
"2

m0
E

R
Vs1dsxdHcksxd

d3

dx3cksxd − F d

dx
cksxdG

3F d2

dx2cksxdGJdx. sB4d

However, by virtue of the Schrödinger equation, we have the
equality

−
"2

2m0
Hcksxd

d3

dx3cksxd − F d

dx
cksxdGF d2

dx2cksxdGJ
= cksxd

d

dx
hfEk − Vsxdgcksxdj − F d

dx
cksxdG

3hfEk − Vsxdgcksxdj

= − cksxd2Vs1dsxd.

Replacing the last equality in Eq.sB4d, we obtain

−
"2

2m0
E

R
Vs4dsxdcksxd2dx+

2"2

m0
E

R
Vs2dsxdF d

dx
cksxdG2

dx

= 2E
R

fVs1dsxdg2cksxd2dx,

relation that, upon substitution in Eq.sB3d, produces the fol-
lowing corollary of Theorem 5.

Corollary 1. The convergence constant for the relative
error of the partition function for the trapezoidal Trotter path
integral technique is given by the average

FIG. 3. The convergence constant for the relative error of the
partition function of the quartic oscillator, computed for the trap-
ezoidal Trotter path integral method. The sequence of observed con-
vergence constantscn is seen to converge to the theoretical value of
cth<88.35, which is the value predicted by Corollary 1.

FIG. 4. Same as in Fig. 3, but for the He cage problem.
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lim
n→`

sn + 1d2Zn
TTsbd − Zsbd

Zsbd
=

1

24

"2b3

m0

E
R

fVs1dsxdg2rsx;bddx

E
R

rsx;bddx

,

sB5d
wherersx;bd=rsx,x;bd is the diagonal density matrix.

Observation. It can be shown that for a multidimensional
system, the convergence constant is given by the formula

lim
n→`

sn + 1d2Zn
TTsbd − Zsbd

Zsbd

=
"2b3

24 o
i=1

d
1

m0,i

E
Rd

f]iVsxdg2rsx;bddx

E
Rd

rsx;bddx

, sB6d

where ]iVsxd denotes the partial derivative with respect to
the coordinatei.

The numerical verification of Corollary 1 is done by nu-
merical matrix multiplication for the systems discussed in
Sec. V. The theoretical convergence constants

cth =
1

24

"2b3

m0

E
R

fVs1dsxdg2rsx;bddx

E
R

rsx;bddx

can also be computed by numerical matrix multiplicationsor,
more generally, by Monte Carlo integrationd. The experi-
mental values are obtained by numerically studying the limit
of the sequence

cn = sn + 1d2Zn
TTsbd − Zsbd

Zsbd
.

As Figs. 3 and 4 show, the agreement between the theoretical
and the experimentally observed convergence constants is
excellent for both the quartic oscillator and the He cage prob-
lem. This agreement is further evidence that the statement of
Theorem 2 is correct, at least for the class of potentials and
short-time approximations considered in the present paper.
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